References

Space Debris Collection and Mitigation

  • A deployable mechanism concept for the collection of small-to-medium-size space debris. Advances in Space Research Journal. D., St-Onge, I., Sharf, L., Sagnieres, C., Gosselin (2018)
  • Dynamic modelling of a four-bar free floating mechanism with passive joints and flywheel actuators. Proceedings of The Fourth Joint International Conference on Multibody System Dynamics. St-Onge, D. and Gosselin, C. (2016)
  • Synthesis and design of a one-Degree-of-freedom planar deployable mechanism with a large expansion ratio. ASME Journal of Mechanisms and Robotics. Volume 8(2). St-Onge, D. and Gosselin, C. (2015)
  • Nakamura, M., Kitazawa, Y., Matsumoto, H., Okudaira, O., Hanada, T., Sakurai, A., … Kobayashi, M. (2015). Development of in-situ micro-debris measurement system. Advances in Space Research, 56(3), 436–448. https://doi.org/10.1016/j.asr.2015.04.009
  • Flegel, S. K., Gelhaus, J., Möckel, M., Wiedemann, C., Krag, H., Klinkrad, H., & Vörsmann, P. (2011). Multi-layer insulation model for MASTER-2009. Acta Astronautica, 69(11–12), 911–922. https://doi.org/10.1016/j.actaastro.2011.06.015
  • Kobayashi, M., Miyachi, T., & Nakamura, M. H. (2011). Cosmic Dust Detector Capable of Measuring Hypervelocity Speed Using Piezoelectric PZT. In 42nd Lunar and Planetary Science Conference (Vol. 1). The Woodlands.
  • Bauer, W., Romberg, O., Wiedemann, C., Drolshagen, G., & Vörsmann, P. (2014). Development of in-situ Space Debris Detector. Advances in Space Research, 54(9), 1858–1869. https://doi.org/10.1016/j.asr.2014.07.035
  • Riedel, W., Nahme, H., White, D. M., & Clegg, R. A. (2006). Hypervelocity impact damage prediction in composites : Part II — experimental investigations and simulations. International Journal of Impact Engineering, 33, 670–680. https://doi.org/10.1016/j.ijimpeng.2006.09.052
  • Mandeville, J. C., Rival, M., & Alby, F. (1999). SECONDARY IMPACT GENERATED PARTICLES : IMPLICATIONS ORBITAL DEBRIS POPULATION. Advances in Space Research, 23(1), 89–94.
  • Vance, L., & Mense, A. (2013). Value analysis for orbital debris removal. Advances in Space Research, 52(4), 685–695. https://doi.org/10.1016/j.asr.2013.04.024
  • Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112. https://doi.org/10.1007/s11721-014-0092-4
  • Nishida, S.-I., Kawamoto, S., Okawa, Y., Terui, F., & Kitamura, S. (2009). Space debris removal system using a small satellite. Acta Astronautica, 65(1–2), 95–102. https://doi.org/10.1016/j.actaastro.2009.01.041
  • Ailor, W., & Ph, D. (2012). Reentry Breakup Recorder : An Innovative Device for Collecting Data during Breakup of Reentering Objects, 2011(January).
  • Riebeek, H. (2009). Catalog of Earth Satellite Orbits. NASA - Earth Observatory, 1–10. Retrieved from http://earthobservatory.nasa.gov/Features/OrbitsCatalog/
  • Schmitz, M., Fasoulas, S., & Utzmann, J. (2015). Performance model for space-based laser debris sweepers. Acta Astronautica, 115, 376–383. https://doi.org/10.1016/j.actaastro.2015.05.032
  • Pardini, C., & Anselmo, L. (2014). Review of past on-orbit collisions among cataloged objects and examination of the catastrophic fragmentation concept. Acta Astronautica, 100(1), 30–39. https://doi.org/10.1016/j.actaastro.2014.03.013
  • Ting Wang. (2010). Analysis of Debris from the Collision of the Cosmos 2251 and the Iridium 33 Satellites. Science and Global Security, 18(2), 87–118. https://doi.org/10.1080/08929882.2010.493078
  • Metzger, J. D., Leclaire, R. J., Howe, S. D., & Burgin, K. C. (1989). Nuclear-powered space debris sweeper. Journal of Propulsion and Power, 5(5), 582–590. https://doi.org/10.2514/3.23193
  • Matney, M. (2016). Measuring small debris – what you can ’ t see can hurt you. In The Von Karman Institute for Fluid Dynamics Lecture Series, Space Debris Reentry and Mitigation.
  • Aghili, F. (2012). Active Orbital Debris Removal Using Space Robotics. Robotics.Estec.Esa.Int, 1–9. Retrieved from http://robotics.estec.esa.int/i-SAIRAS/isairas2012/Papers/Session 8B/08B_01_aghili.pdf
  • Bonnal, C., Ruault, J. M., & Desjean, M. C. (2013). Active debris removal: Recent progress and current trends. Acta Astronautica, 85, 51–60. https://doi.org/10.1016/j.actaastro.2012.11.009
  • Liou, J.-C. (2011, July). A Note on Active Debris Removal. Orbital Debris Quarterly News, 15(3), 7–8.
  • Krisko, P. H. (2010). The New NASA Orbital Debris Engineering Model ORDEM 3.0 P. H. Krisko, 2010(September), 1–10.
  • Lokcu, E., & Ash, R. L. (2011). A de-orbit system design for CubeSat payloads. Recent Advances in Space Technologies (RAST), 2011 5th International Conference on, 470–474. https://doi.org/10.1109/RAST.2011.5966879
  • Lips, T., Fritsche, B., Koppenwallner, G., & Leveau, C. (2007). Ariane-5 Epc Re-Entry - a Comparison of Observations and Scarab Simulation Results. 2nd IAASS Conference: Space Safety in a Global World, (July).
  • Christiansen, E. L. (1993). Design and performance equations for advanced meteoroid and debris shields. International Journal of Impact Engineering, 14(1–4), 145–156. https://doi.org/10.1016/0734-743X(93)90016-Z
  • Krag, H., Klinkrad, H., Oswald, M., Stabroth, S., & Wiedemann, C. (2007). Analysing the risk increase in LEO due to recent major fragmentation events. European Space Agency, (Special Publication) ESA SP, (SP-645). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-36448976183&partnerID=40&md5=d8ab34df0ea0f2a18ce728c67e265f9c
  • Kessler, D. J., & Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research, 83(A6), 2637–2646. https://doi.org/10.1029/JA083iA06p02637
  • Christiansen, E. (2003). Meteoroid/Debris Shielding. Houston. Retrieved from papers3://publication/uuid/967BFB47-A3EF-40AE-80D5-BACE37F1165F
  • J.Dunn, M. (2012). Space Debris Removal, 1(19), 1–20.
  • Baldwin, M. C., & Lu, P. (2012). Autonomous optimal deorbit guidance. Advances in the Astronautical Sciences, 142(1), 2837–2854. https://doi.org/10.2514/1.53937
  • Aghili, F. (2012). A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Transactions on Robotics, 28(3), 634–649. https://doi.org/10.1109/TRO.2011.2179581
  • Bernstein, K. S. (2007). Structural Design of Glass and Ceramic Components for Space System Safety 1 . 2 Strength Characteristics of Glass and Ceramics. Glass, (May). IADC. (2007). IADC Space Debris Mitigation Guidelines, (Revision 1), 1–10.
  • Harkness, P., McRobb, M., Lützkendorf, P., Milligan, R., Feeney, A., & Clark, C. (2014). Development status of AEOLDOS - A deorbit module for small satellites. Advances in Space Research, 54(1), 82–91. https://doi.org/10.1016/j.asr.2014.03.022
  • Ganguli, G., Crabtree, C., Rudakov, L., & Chappie, S. (2011). A Concept For Elimination Of Small Orbital Debris. Nature, 473(7346), 221–225. https://doi.org/10.1038/nature10603
  • Liou, J.-C., & Shoots, D. (2013, January). An update of the FY-1C, Iridium 33, and Cosmos 2251 Fragments. Orbital Debris Quarterly News, 17(1).
  • Spillantini, P., Casolino, M., Durante, M., Mueller-Mellin, R., Reitz, G., Rossi, L., … Sorbi, M. (2007). Shielding from cosmic radiation for interplanetary missions: Active and passive methods. Radiation Measurements, 42(1), 14–23. https://doi.org/10.1016/j.radmeas.2006.04.028
  • Liou, J. C. (2006). Collision activities in the future orbital debris environment. Advances in Space Research, 38(9), 2102–2106. https://doi.org/10.1016/j.asr.2005.06.021
  • Barth, T. S., & Kanki, B. G. (2007). Designing safety into space vehicles through ground crew factors. European Space Agency, (Special Publication) ESA SP, (SP-645), 1–6.
  • Abrams, J. (2007). A moderate risk, low mass concept to de-orbit the hubble space telescope using an electro-dynamic tether. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Levin, E., Pearson, J., & Carroll, J. (2012). Wholesale debris removal from LEO. Acta Astronautica, 73, 100–108. https://doi.org/10.1016/j.actaastro.2011.11.014
  • Ryan, S., Hedman, T., & Christiansen, E. L. (2010). Honeycomb vs. foam: Evaluating potential upgrades to ISS module shielding. Acta Astronautica, 67(7–8), 818–825. https://doi.org/10.1016/j.actaastro.2010.05.021
  • Knirsch, U. (2012). Device for trapping space debris, US 2012/0286100 A1.
  • T. Nock, K., D. McRonald, A., Maynard Aaron, K., Nock, K. T., McRonald, A. D., & Aaron, K. M. (2003). Balloon device for lowering space object orbits. United States: United States. https://doi.org/10.1016/j.(73)
  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. https://doi.org/10.1007/s11721-012-0075-2
  • Honeywell. (2013). Honeywell Spectra ® Fiber Capability Guide.
  • Mason, J., Stupl, J., Marshall, W., & Levit, C. (2011). Orbital debris-debris collision avoidance. Advances in Space Research, 48(10), 1643–1655. https://doi.org/10.1016/j.asr.2011.08.005
  • Gates. (2009). Polychain GT Carbon Belt Drive Design Manual. Denver. https://doi.org/10.1002/ejoc.201200111
  • Liou, J. C. (2011). An active debris removal parametric study for LEO environment remediation. Advances in Space Research, 47(11), 1865–1876. https://doi.org/10.1016/j.asr.2011.02.003
  • Zhai, G., & Zhang, J. R. (2012). Space tether net system for debris capture and removal. In 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (Vol. 1, pp. 257–261). Nanchang. https://doi.org/10.1109/IHMSC.2012.71
  • Street, E. (2000). Satellite Orbital Decay Calculations. Flux. Retrieved from http://www.ips.gov.au/Category/Educational/Space Weather/Space Weather Effects/SatelliteOrbitalDecayCalculations.pdf
  • Bernstein, K. S. (2007). Safely Containing Frangible Materials Used in Space Flight Equipment. In 2nd IAASS Conference: Space Safety in a Global World.
  • Bastida Virgili, B., Krag, H., Lips, T., & De Pasquale, E. (2010). SIMULATION OF THE ATV RE-ENTRY OBSERVATIONS. In 4th IAASS Conference “Making Safety Matter.”
  • Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse, M., & Richardson, D. (2013). Method for removing orbital objects from orbit using a capture net for momentum transfer, (Taylor, R., Gravseth, I., Turse, D., Keller, P., Hulse,
  • M., Richardson, D. (2013). Method for removing orbital objects from orbit using a capture net for momentum transfer, US 2013/0075534 A1.), US 2013/0075534 A1.
  • Zhang, F., Sharf, I., Misra, A., & Huang, P. (2015). On-line estimation of inertia parameters of space debris for its tether-assisted removal. Acta Astronautica, 107, 150–162. https://doi.org/10.1016/j.actaastro.2014.11.016
  • Nguyen-Huynh, T. C., & Sharf, I. (2013). Adaptive Reactionless Motion and Parameter Identification in Postcapture of Space Debris. Journal of Guidance, Control, and Dynamics, 36(2), 404–414. https://doi.org/10.2514/1.57856
  • Space.com. (2013). Will China Launch an Anti-Satellite Test Soon? Retrieved April 11, 2013, from http://www.space.com/19137-china-anti-satellite-launch-test.html
  • Barbee, B. W., Alfano, S., Piñon, E., Gold, K., & Gaylor, D. (2012). Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects. In 35th Annual AAS Guidance and Control Conference (pp. 1–19). Breckenridge.
  • Corning, D. (2015). DOW CORNING ® 93-500 SPACE – GRADE ENCAPSULANT.
  • Ryan, S., & Christiansen, E. L. (2011). A ballistic limit analysis programme for shielding against micrometeoroids and orbital debris. Acta Astronautica, 69(5–6), 245–257. https://doi.org/10.1016/j.actaastro.2011.04.012
  • Liou, J.-C., & Johnson, N. L. (2014). Risk in space from orbiting debris. Science, 311(5759), 340–341.
  • Wilde, P. D. (2012). PUBLIC RISK CRITERIA AND RATIONALE FOR COMMERCIAL LAUNCH AND, 2011(January).
  • Suite, A. B., Canaveral, C., Ast-, F. A. A., Ave, I., & Washington, S. W. R. (2012). Development of debris lists for launch and reentry, 2011(January).
  • Cougnet, C., David, M., Gergonne, B., Oswald, M., Putzar, R., & Stokes, H. (2013). Reducing the Vulnerability of Space Systems To Small Debris Particles, 2013(April), 22–25.
  • Arnal, M., Lainé, N., & Aussilhou, C. (2012). CASUALTY RISK ASSESSMENT CONTROLLED RE-ENTRY OF EPS – ARIANE 5ES – ATV MISSION. In 5th IAASS Conference - A Safer Space for a Safer World.
  • Bestaoui, Y. (2012). Space debris collision avoidance for a space vehicle. In 5th IAASS Conference - A Safer Space for a Safer World.
  • Finkleman, D. (2012). Orbit design for safety, 2008(January).
  • Ailor, W., Hallman, W., Steckel, G., & Weaver, M. (2012). Test cases for reentry survivability modeling. In 5th IAASS Conference - A Safer Space for a Safer World.
  • Mella, G. Di, Pergola, P., Ruggiero, A., & Andrenucci, M. (2012). Foam-based method for active space debris removal: foam characterization, modeling and testing, 2011(January).
  • Kelley, R. L., & Johnson, N. L. (2011). Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry, 2011(1), 1–4. Retrieved from http://hdl.handle.net/2060/20110008637
  • Cremaschi, F., Huertas, I., Ortega, G., Sgobba, T., Laurel, C., Gmbh, A. S., … States, U. (2016). DE-ORBITING THE INTERNATIONAL SPACE STATION ISS :, 2011(January 2012).
  • Butz, J., Carriere, T., Abbud-madrid, A., & Easton, J. (2012). ZERO GRAVITY AIRCRAFT TESTING OF A PROTOTYPE PORTABLE, 2011(January).
  • Baidong, J., Wentao, L., Fengxi, C., & Fuqiu, L. (2012). A risk assessment model and method of major aerospace projects. In 4th IAASS Conference “Making Safety Matter.”
  • Arndt, J., & Kreimer, J. (2010). THE END-TO-END SAFETY VERIFICATION PROCESS IMPLEMENTED TO ENSURE SAFE OPERATIONS OF THE COLUMBUS RESEARCH MODULE. In 4th.
  • Kohli, R., & Robinson, E. Y. (2012). WALDO - A SYSTEM FOR REMOVAL OF LARGE ORBITAL DEBRIS, 2011(January), 5–8.
  • Ciancone, M. L., & Johnson, G. W. (2010). Safety considerations in design of spacecraft hatches, 2010(May).
  • Ailor, W., Womack, J., Peterson, G., & Murrell, E. (2010). Space debris and the cost of space operations. European Space Agency, (Special Publication) ESA SP, 680 SP(May).
  • Davis, J., Roush, A., Rodrigo, K., Johnson, E., Sadilek, A., Anderson, C., … Pisacane, V. (2010). Debris resistive acoustic grid orbital navy sensor (DRAGONS). European Space Agency, (Special Publication) ESA SP, 680 SP(May).
  • Agency, E. S., & Management, Q. (2010). Safety Requirements for Human Rated Space Systems, 2010(May).
  • Barr, S. (2010). Evaluating failures and near misses in human spaceflight history for lessons for future human spaceflight. European Space Agency, (Special Publication) ESA SP, 680 SP(May).
  • Bialke, B. (2007). RE-ENTRY SURVIVABILITY OF, (May).
  • Barragan, M. H., Spangler, C., & Barrera, L. K. (2007). Propellant analysis and distillation unit design. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Bavandi, A. (2007). Analytical modeling of LOX/LH2 and LOX/RP1 explosions. 2nd IAASS Conference: Space Safety in a Global World, (SP-645). Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-36448957940&partnerID=40&md5=bd113ae3925fea3c4fdf8d64e04aa562
  • Barr, S. (2007). Mitigating and preventing the growth of tin and other metal whiskers on critical hardware. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Lyle, J. B. (2007). USE OF THE JULIER-ULHMANN TRANSFORM FOR RAPID COMPUTATION OF DEBRIS IMPACT DISPERSIONS, (May).
  • Krag, H., Klinkrad, H., & Alarcón-Rodríguez, J. R. (2007). Assessment of orbit uncertainties for collision risk predictions at ESA. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Lukyashchenko, V., Mikhailov, M., & Yakovlev, M. (2007). SPACE DEBRIS AND GLOBAL SAFETY CHALLENGES IN SPACE ACTIVITY, (May).
  • Leifeste, M. R., Greene, N. J., & Yoder, T. B. (2007). Interrelationship of nondestructive evaluation methodolologies applied to testing of composite overwrapped pressure vessels. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Barr, S. (2007). PROTECTION OF SPACE VEHICLES FROM MICROMETEOROID / ORBITAL DEBRIS ( MMOD ) DAMAGES. In 2nd IAASS Conference: Space Safety in a Global World.
  • Johnson, N. L. (2007). The disposal of spacecraft and launch vehicle stages in low earth orbit. European Space Agency, (Special Publication) ESA SP, (SP-645).
  • Haranath, D. (1996). Aerogel: The lightest solid known. Resonance, (November).
  • Bigelow, R. T. (2005). Orbital debris shield, US 2005/0284986 A1.
  • Moussi, A., Drolshagen, G., McDonnell, J. A. M., Mandeville, J. C., Kearsley, A. T., & Ludwig, H. (2005). Hypervelocity impacts on HST solar arrays and the debris and meteoroids population. Advances in Space Research, 35(7), 1243–1253. https://doi.org/10.1016/j.asr.2005.03.060
  • Colombo, C., & McInnes, C. (2011). Orbital dynamics of “smart dust” devices with solar radiation pressure and drag. Journal of Guidance, Control, and Dynamics, 34(6), 1613–1631. https://doi.org/10.2514/1.52140
  • This, W., Standard, I. S. O. I., Standard, I., & Document, N. S. (2007). Space systems — Determining orbit lifetime, (0).
  • Andrews, J., Watry, K., & Brown, K. (2011). Nanosat Deorbit and Recovery System to Enable New Missions. 25th Annual AIAA/USU Conference on Small Satellites, 1–5. Retrieved from http://digitalcommons.usu.edu/smallsat/2011/all2011/68/
  • W.Allen, D., & L.Spicer, R. (2011). Debris removal management system and method of operation thereof, US 2011\0139936 A1.
  • Liou, J.-C. (2010). The Top 10 Questions for Active Debris Removal. European Workshop on Active Debris Removal, (June).
  • News, Q. (2011). Orbital Debris, 15(4), 1–10.
  • Lovgren, S. (2006, January 19). Sapce Junk Cleanup Needed, NASA Experts Warn. National Geographic News.
  • Kearsley, A. T., Graham, G. A., Burchell, M. J., Taylor, E. A., Drolshagen, G., Chater, R. J., & McPhail, D. (2005). MULPEX: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris. Advances in Space Research, 35(7), 1270–1281. https://doi.org/10.1016/j.asr.2005.03.030
  • Carandente, V., Zuppardi, G., & Savino, R. (2014). Aerothermodynamic and stability analyses of a deployable re-entry capsule. Acta Astronautica, 93, 291–303. https://doi.org/10.1016/j.actaastro.2013.07.030
  • T.Robinson, E. (2003). Spacecraft for removal of space orbital debris, US 6655637 B1.
  • Liou, J. C., Johnson, N. L., & Hill, N. M. (2010). Controlling the growth of future LEO debris populations with active debris removal. Acta Astronautica, 66(5–6), 648–653. https://doi.org/10.1016/j.actaastro.2009.08.005
  • Nishida, S., & Yoshikawa, T. (2003). Space debris capture by a joint compliance controlled robot. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Vol. 1, pp. 496–502). Kobe. https://doi.org/10.1109/AIM.2003.1225145
  • Ishige, Y., Kawamoto, S., & Kibe, S. (2004). Study on electrodynamic tether system for space debris removal. Acta Astronautica, 55(11), 917–929. https://doi.org/10.1016/j.actaastro.2004.04.015
  • Levin, E., Pearson, J., Carroll, J., & Oldson, J. (2011). Orbital Debris: Time to Remove.
  • Bischof, B., Starke, J., Guenther, H., Foth, P., & Kerstein, L. (2007). System for capturing and recovering free-flying objects in space. US.

Human-Robot Interaction

  • Robot-Human Interaction: A Human Speaker Experiment. Proceedings of the 12th annual ACM/IEEE conference on Human-Robot Interaction. Vienna. St-Onge, D., Reeves, N. and Petkova, N. (2017)
  • Control, localization and human interaction with an autonomous lighter-than-air performer. Robotics and Autonomous Systems. St-Onge, D., Breches, P-Y, Sharf, I., Reeves, N., Rekleitis, I., Abouzakhm, P., Girdhard, Y., Harmat, A., Dudek, G. and Giguere, P. (2016)
  • Still and Useless: The Ultimate Automaton. Editors : Damith Herath, Christian Kroos et Stelarc. "Robots and Art: Exploring an Unlikely Symbiosis". Cognitive Science and Technology. Springer. Reeves, N. and St-Onge, D. (2015)
  • AEROSTABILES: A new approach to HRI researches. Proceedings of the 10th annual ACM/IEEE International conference on Human-Robot Interaction. Portland. 277-277. St-Onge, D., Reeves, N., Giguere, P., Sharf, I., Dudek, G., Rekleitis, I., Breches, P.-Y., Abouzakhm, P., Babin, P. (2015)
  • Development of Aerobots for Satellite Emulation, Architecture and Art. Proceedings of the 13th International Symposium on Experimental Robotics. Quebec. 167-181. Sharf, I., Paerson, M.S., St-Onge, D. et Reeves, N. (2011)
  • Flying robotic art for HRI and interface research. Proceedings of the International Symposium on Electronic Arts. Istanbul, Turkey N. Reeves and D. St-Onge. (2011)
  • A comparison of collaborative approaches in robotic artworks. Proceedings of the International Conference on Robotics and Automation Robots & Art Workshop. Shanghai, China D. St-Onge, N. Reeves and C. Gosselin. (2011)
  • Human Interaction with flying cubic automata, "What do Collaborations with the Arts Have to Say About Human-Robot Interaction?" Workshop at the 5th Conference on HRI (IEEE/ACM), Osaka, Japon D. St-Onge and N. Reeves. (2010)
  • Chen, Y., Xu, W., Sundaram, H., Rikakis, T., & Liu, S.-M. (2008). A dynamic decision network framework for online media adaptation in stroke rehabilitation. ACM Transactions on Multimedia Computing, Communications, and Applications, 5(1), 1–38.
  • Vogeley, K., & Bente, G. (2010). “Artificial humans”: Psychology and neuroscience perspectives on embodiment and nonverbal communication. Neural Networks, 23(8–9), 1077–1090. https://doi.org/10.1016/j.neunet.2010.06.003
  • Bethel, C. L., & Murphy, R. R. (2007). Non-facial/non-verbal methods of affective expression as applied to robot-assisted victim assessment. Proceeding of the ACM/IEEE International Conference on Human-Robot Interaction - HRI ’07, 287. https://doi.org/10.1145/1228716.1228755
  • Maurice, P., Padois, V., Measson, Y., & Bidaud, P. (2017). Human-oriented design of collaborative robots. International Journal of Industrial Ergonomics, 57, 88–102. https://doi.org/10.1016/j.ergon.2016.11.011
  • Masuyama, N., Loo, C. K., & Seera, M. (2018). Personality affected robotic emotional model with associative memory for human-robot interaction. Neurocomputing, 272, 213–225. https://doi.org/10.1016/j.neucom.2017.06.069
  • El Kaliouby, R., & Robinson, P. (2005). Real-time inference of complex mental states from facial expressions and head gestures. Real-Time Vision for Human-Computer Interaction, 181–200. https://doi.org/10.1007/0-387-27890-7_11
  • Johnson, B. E. (2017). Inferring Final Plans : Expanding on a Generative and Logic-Based Approach. MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
  • Nagi, J., Ngo, H., Gambardella, L. M., & Di Caro, G. A. (2015). Wisdom of the swarm for cooperative decision-making in human-swarm interaction. Proceedings - IEEE International Conference on Robotics and Automation, 2015–June(June), 1802–1808. https://doi.org/10.1109/ICRA.2015.7139432
  • Bruemmer, D. J., Few, D. A., Boring, R. L., Marble, J. L., Walton, M. C., & Nielsen, C. W. (2005). Shared understanding for collaborative control. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 35(4), 494–504. https://doi.org/10.1109/TSMCA.2005.850599
  • Grizou, J., Lopes, M., & Oudeyer, P.-Y. (2013). Robot Learning Simultaneously a Task and How to Interpret Human Instructions Robot Learning Simultaneously a Task and How to Interpret Human Instructions Robot Learning Simultaneously a Task and How to Interpret Human Instructions. Retrieved from https://hal.archives-ouvertes.fr/hal-00850703/document
  • Dietz, G., E., J. L., Washington, P., Kim, L. H., & Follmer, S. (2017). Human Perception of Swarm Robot Motion. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’17 (pp. 2520–2527). Denver. https://doi.org/10.1145/3027063.3053220
  • Mcguire, K., Coppola, M., Wagter, C. De, & Croon, G. De. (2017). Towards Autonomous Navigation of Multiple Pocket-Drones in Real-World Environments. In Proceedings of the International Conference on Intelligent Robots and Systems. Vancouver.
  • Zhang, F., Cully, A., & Demiris, Y. (2017). Personalized Robot-assisted Dressing using User Modeling in Latent Spaces. In Proceedings of the International Conference on Intelligent Robots and Systems (pp. 3603–3610). Vancouver.
  • Clegg, A., Yu, W., Erickson, Z., Tan, J., Liu, C. K., & Turk, G. (2017). Learning to Navigate Cloth using Haptics. In Proceedings of the International Conference on Intelligent Robots and Systems. Vancouver. Retrieved from https://arxiv.org/pdf/1703.06905.pdf
  • Adamides, G., Christou, G., Katsanos, C., Xenos, M., & Hadzilacos, T. (2015). Usability Guidelines for the Design of Robot Teleoperation : A Taxonomy. IEEE Transactions on Human-Machine Systems, 45(2), 256–262.
  • Chen, J. Y. C., Haas, E. C., & Barnes, M. J. (2007). Human Performance Issues and User Interface Design for Teleoperated Robots. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 37(6), 1231–1245.
  • Sun, F., Kuo, C., Cheng, H., Buthpitiya, S., Collins, P., & Griss, M. (2010). Activity-aware Mental Stress Detection Using Physiological Sensors. In International Conference on Mobile Computing, Applications, and Services (pp. 282–301).
  • Buss, M., Carton, D., Gonsior, B., Kuehnlenz, K., Landsiedel, C., Mitsou, N., … Wollherr, D. (2011). Towards Proactive Human-Robot Interaction in Human Environments. In International Conference on Cognitive Infocommunications.
  • Adriel, V., Oliveira, D. J., Nedel, L., & Maciel, A. (2016). Speaking Haptics : Proactive Haptic Articulation for Intercommunication in Virtual Environments. In IEEE Virtual Reality Conference (pp. 251–252). Greenville.
  • Lee, W., Ryu, H., Yang, G., Kim, H., Park, Y., & Bang, S. (2007). Design guidelines for map-based human – robot interfaces : A colocated workspace perspective, 37, 589–604. https://doi.org/10.1016/j.ergon.2007.03.004
  • Anderson, R. J., Shirey, D. L., & Morse, W. D. (2000). A Telerobot Control System for Accident Response. In Proceedings of the 2000 IEEE International Conference on Robotics & Automation (pp. 2000–2006). San Francisco.
  • Biasutti, M. (2015). Creativity in virtual spaces: Communication modes employed during collaborative online music composition. Thinking Skills and Creativity, 17, 117–129. https://doi.org/10.1016/j.tsc.2015.06.002
  • Ros, R., Baroni, I., & Demiris, Y. (2014). Adaptive human-robot interaction in sensorimotor task instruction: From human to robot dance tutors. Robotics and Autonomous Systems, 62(6), 707–720. https://doi.org/10.1016/j.robot.2014.03.005
  • Lewis, C., Lovatt, P., & Kirk, E. (2015). Many hands make light work: The facilitative role of gesture in verbal improvisation. Thinking Skills and Creativity, 17, 149–157. https://doi.org/10.1016/j.tsc.2015.06.001
  • Mukherjee, D., & Ghose, D. (2016). On Synchronous and Asynchronous Discrete Time Heterogeneous Cyclic Pursuit. IEEE Transactions on Automatic Control, 9286(c), 1–1. https://doi.org/10.1109/TAC.2016.2631302
  • Kaltenbrunner, M., Jord??, S., Geiger, G., & Alonso, M. (2006). The reacTable*: A collaborative musical instrument. Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE, 406–411. https://doi.org/10.1109/WETICE.2006.68
  • Weinberg, G., Blosser, B., Mallikarjuna, T., & Raman, A. (2009). The Creation of a Multi-Human, Multi-Robot Interactive Jam Session. Proceedings of the International Conference on New Interfaces for Musical Expression, 70–73.
  • Goc, M. Le, Kim, L. H., Parsaei, A., Fekete, J., Dragicevic, P., & Follmer, S. (2016). Zooids : Building Blocks for Swarm User Interfaces. In UIST. Tokyo.
  • Petersen, K., Solis, J., & Takanishi, A. (2010). Musical-based interaction system for the Waseda Flutist Robot: Implementation of the visual tracking interaction module. Autonomous Robots, 28(4), 471–488. https://doi.org/10.1007/s10514-010-9180-5
  • Cosentino, S., Petersen, K., Lin, Z. H., Bartolomeo, L., Sessa, S., Zecca, M., & Takanishi, A. (2014). Natural human-robot musical interaction: understanding the music conductor gestures by using the WB-4 inertial measurement system.
  • Advanced Robotics, 28(11), 781–792. https://doi.org/Doi 10.1080/01691864.2014.889577
  • Roncone, A., Mangin, O., & Scassellati, B. (2017). Transparent Role Assignment and Task Allocation in Human Robot Collaboration. In IEEE Int. Conf. on Robotics and Automation (ICRA) (pp. 1014–1021).
  • Mead, R. (2016). Situated Proxemics and Multimodal Communication: Space, Speech, and Gesture in Human-Robot Interaction. UNIVERSITY OF SOUTHERN CALIFORNIA.
  • Smart, W. D., Pileggi, A., & Takayama, L. (2010). HRI 2010 workshop 1: What do collaborations with the arts have to say about HRI? In Human-Robot Interaction (HRI), 2010 5th ACM/IEEE International Conference on (Vol. 15, p. 3). Osaka. https://doi.org/10.1109/HRI.2010.5453281
  • Sung, J. Y., Grinter, R. E., & Christensen, H. I. (2010). Domestic robot ecology: An initial framework to unpack long-term acceptance of robots at home. International Journal of Social Robotics, 2(4), 417–429. https://doi.org/10.1007/s12369-010-0065-8
  • Levillain, F., Zibetti, E., & Lefort, S. (2017). Interacting with Non-anthropomorphic Robotic Artworks and Interpreting Their Behaviour. International Journal of Social Robotics, 9(1), 141–161. https://doi.org/10.1007/s12369-016-0381-8
  • Sung, J., Christensen, H. I., & Grinter, R. E. (2009). Robots in the wild. Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction - HRI ’09, 45. https://doi.org/10.1145/1514095.1514106
  • Recchiuto, C. T., Sgorbissa, A., & Zaccaria, R. (2016). Visual feedback with multiple cameras in a UAVs Human-Swarm Interface. Robotics and Autonomous Systems, 80, 43–54. https://doi.org/10.1016/j.robot.2016.03.006
  • Bethel, C. L., Burke, J. L., Murphy, R. R., & Salomon, K. (2007). Psychophysiological experimental design for use in human-robot interaction studies. In 2007 International Symposium on Collaborative Technologies and Systems (pp. 99–105). https://doi.org/10.1109/CTS.2007.4621744
  • Geiskkovitch, D. Y., Cormier, D., Seo, S. H., & Young, J. E. (2016). Please Continue , We Need More Data : An Exploration of Obedience to Robots. Human-Robot Interaction, 5(1), 82–99. https://doi.org/10.5898/JHRI.5.1.Geiskkovitch
  • Mead, R., & Mataric, M. J. (2016). Robots Have Needs Too: People Adapt Their Proxemic Preferences to Improve Autonomous Robot Recognition of Human Social Signals. Human-Robot Interaction, 5(2), 48–68. https://doi.org/10.5898/JHRI.5.2.Mead
  • Fasola, J., & Mataric, M. J. (2013). A Socially Assistive Robot Exercise Coach for the Elderly. Journal of Human-Robot Interaction, 2(2), 3–32. https://doi.org/10.5898/jhri.v2i2.32
  • Nassif, S. R., Mehta, N., & Cao, Y. (2010). A Resilience Roadmap. Design, Automation &Test in Europe Conference & Exhibition, 1011–1016. https://doi.org/10.1109/DATE.2010.5456958
  • Carifio, J., & Perla, R. J. (2007). Ten Common Misunderstandings, Misconceptions, Persistent Myths and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes. Journal of Social Sciences, 3(3), 106–116. https://doi.org/10.3844/jssp.2007.106.116
  • Kahn, P. H., Ishiguro, H., Friedman, B., Kanda, T., Freier, N. G., Severson, R. L., & Miller, J. (2007). What is a human? - Toward psychological benchmarks in the field of human-robot interaction. Interaction Studies, 3(8), 363–390. https://doi.org/10.1109/ROMAN.2006.314461
  • Miller, D., Johns, M., Mok, B., Gowda, N., Sirkin, D., Lee, K., & Ju, W. (2016). Behavioral Measurement of Trust in Automation: The Trust Fall. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 60(1), 1849–1853. https://doi.org/10.1177/1541931213601422
  • Grosz, B. J., Altman, R., Horvitz, E., Mackworth, A., Mitchell, T., Mulligan, D., & Shoham, Y. (2016). Artificial intelligence and life in 2030: One hundred year study on artificial intelligence.
  • Beal, J., Viroli, M., Pianini, D., & Damiani, F. (2016). Self-adaptation to Device Distribution Changes. In Proc of self-assembling and self organising.
  • Brown, D. S., Kerman, S. C., & Goodrich, M. a. (2014). Human-swarm interactions based on managing attractors. In Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction - HRI ’14 (pp. 90–97). https://doi.org/10.1145/2559636.2559661
  • Anitei, S. (2007). 10 Amazing Facts about Human Speech. Retrieved November 11, 2016, from http://news.softpedia.com/news/10-Amazing-Facts-About-Human-Speech-70397.shtml
  • Dautenhahn, K. (2007). Methodology & themes of human-robot interaction: A growing research field. International Journal of Advanced Robotic Systems, 4(1 SPEC. ISS.), 103–108. https://doi.org/10.5772/5702
  • Hodson, H. (2013, February). Tongue-tingling interface lets you taste data. New Scientist.
  • Xu, A., & Dudek, G. (2016). Towards modeling real-time trust in asymmetric human-robot collaborations. In Proc. of the International Symposium on Robotics Research (Vol. 114, pp. 113–129). Singapore. https://doi.org/10.1007/978-3-319-28872-7_7
  • Tadesse, Y., Priya, S., Stephanou, H., Popa, D., & Hanson, D. (2006). Piezoelectric Actuation and Sensing for Facial Robotics. Ferroelectrics, 345(1), 13–25. https://doi.org/10.1080/00150190601018010
  • Marti, P., & Bannon, L. J. (2009). Exploring User-Centred Design in Practice: Some Caveats. Knowledge, Technology & Policy, 22(1), 7–15. https://doi.org/10.1007/s12130-009-9062-3
  • Xu, A., & Dudek, G. (2015). OPTIMo: Online Probabilistic Trust Inference Model for Asymmetric Human-Robot Collaborations. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction - HRI ’15, 221–228. https://doi.org/10.1145/2696454.2696492
  • Fadiga, L., Craighero, L., Buccino, G., & Rizzolatti, G. (2002). Speech listening specifically modulates the excitability of tongue muscles: A TMS study. European Journal of Neuroscience, 15(2), 399–402. https://doi.org/10.1046/j.0953-816x.2001.01874.x
  • Xu, A., & Dudek, G. (2016). Maintaining Efficient Collaboration with Trust-Seeking Robots. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3312–3319). Daejeon.
  • Cappo, E. A., Desai, A., & Michael, N. (2016). Robust Coordinated Aerial Deployments for Theatrical Applications Given Online User Interaction via Behavior Composition. In Proc. of the 13th International Symposium on Distributed Autonomous Robotic Systems (pp. 1–13). London.
  • Tarvainen, T. V. J., & Yu, W. (2015). Preliminary Results on Multi-Pocket Pneumatic Elastomer Actuators for Human-Robot Interface in Hand Rehabilitation. IEEE Conference on Robotics and Biomimetics, 2635–2639.
  • Andolina, S., & Forlizzi, J. (2014). The design of interfaces for multi-robot path planning and control. 2014 IEEE International Workshop on Advanced Robotics and Its Social Impacts, 2015–Janua(January), 7–13. https://doi.org/10.1109/ARSO.2014.7020972
  • Desai, M., Kaniarasu, P., Medvedev, M., Steinfeld, A., & Yanco, H. (2013). Impact of robot failures and feedback on real-time trust. ACM/IEEE International Conference on Human-Robot Interaction, 251–258. https://doi.org/10.1109/HRI.2013.6483596
  • Billings, D. R., Schaefer, K. E., Chen, J. Y. C., & Hancock, P. a. (2012). Human-robot interaction. Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction - HRI ’12, 109. https://doi.org/10.1145/2157689.2157709
  • Keysermann, M. U., Cramer, H., Aylett, R., Zoll, C., Enz, S., & Vargas, P. a. (2012). Can I trust you?: sharing information with artificial companions. Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 3, (June), 1197–1198. Retrieved from http://dl.acm.org/citation.cfm?id=2343919
  • Ullman, D., & Malle, B. (2016). The effect of perceived involvement on trust in human-robot interaction. ACM/IEEE International Conference on Human-Robot Interaction, 2016–April, 641–642. https://doi.org/10.1109/HRI.2016.7451896
  • Hieida, C., Matsuda, H., Kudoh, S., & Suehiro, T. (2016). Action elements of emotional body expressions for flying robots. ACM/IEEE International Conference on Human-Robot Interaction, 2016–April, 439–440. https://doi.org/10.1109/HRI.2016.7451795
  • Salem, M., Lakatos, G., Amirabdollahian, F., & Dautenhahn, K. (2015). Would You Trust a (Faulty) Robot?: Effects of Error, Task Type and Personality on Human-Robot Cooperation and Trust. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, 141–148. https://doi.org/10.1145/2696454.2696497
  • Fernandez, R. A. S., Sanchez-lopez, J. L., Sampedro, C., Bavle, H., Molina, M., & Campoy, P. (2016). Natural User Interfaces for Human-Drone Multi-Modal Interaction. 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 1013–1022. https://doi.org/10.1109/ICUAS.2016.7502665
  • Lee, J. D., & See, K. a. (2004). Trust in automation: designing for appropriate reliance. Human Factors, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50.30392
  • Freedy, A., DeVisser, E., Weltman, G., & Coeyman, N. (2007). Measurement of trust in human-robot collaboration. Proceedings of the 2007 International Symposium on Collaborative Technologies and Systems, CTS, 106–114. https://doi.org/10.1109/CTS.2007.4621745
  • Park, E., Jenkins, Q., & Jiang, X. (2008). Measuring Trust of Human Operators in New Generation Rescue Robots. Proceedings of the JFPS International Symposium on Fluid Power, 2008, 489–492. https://doi.org/10.5739/isfp.2008.489
  • Perry, C. O., Leonardo, S., Mathematics, V., Double, S., & Perry, C. (2016). On the Edge of Science : The Role of the Artist â€TM s Intuition in Science Published by : The MIT Press Stable URL : http://www.jstor.org/stable/1575845 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use , available at , 25(3), 249–252.
  • Arkin, R. C., Fujita, M., Takagi, T., & Hasegawa, R. (2003). An ethological and emotional basis for human-robot interaction. Robotics and Autonomous Systems, 42(3–4), 191–201. https://doi.org/10.1016/S0921-8890(02)00375-5
  • Breazeal, C. (2003). Emotion and sociable humanoid robots. International Journal of Human Computer Studies, 59(1–2), 119–155. https://doi.org/10.1016/S1071-5819(03)00018-1
  • Hoffman, G., & Ju, W. (2014). Designing Robots With Movement in Mind. Journal of Human-Robot Interaction, 3(1), 89. https://doi.org/10.5898/JHRI.3.1.Hoffman
  • Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3–4), 143–166. https://doi.org/10.1016/S0921-8890(02)00372-X
  • Mavridis, N. (2015). A review of verbal and non-verbal human-robot interactive communication. Robotics and Autonomous Systems, 63(P1), 22–35. https://doi.org/10.1016/j.robot.2014.09.031
  • Bretan, M., Hoffman, G., & Weinberg, G. (2015). Emotionally expressive dynamic physical behaviors in robots. International Journal of Human Computer Studies, 78, 1–16. https://doi.org/10.1016/j.ijhcs.2015.01.006
  • Hoffman, G. (2012). Embodied Cognition for Autonomous Interactive Robots. Topics in Cognitive Science, 4(4), 759–772. https://doi.org/10.1111/j.1756-8765.2012.01218.x
  • Hoffman, G., & Weinberg, G. (2011). Interactive improvisation with a robotic marimba player. Autonomous Robots, 31(2–3), 133–153. https://doi.org/10.1007/s10514-011-9237-0
  • Lasseter, J. (1987). Principles of traditional animation applied to 3D computer animation. ACM SIGGRAPH Computer Graphics, 21(4), 35–44. https://doi.org/10.1145/37402.37407
  • Sharf, I., Persson, M. S., St-Onge, D., & Reeves, N. (2011). Development of Aerobots for Satellite Emulation, Architecture and Art. In Proceedings of the 13th International Symposium on Experimental Robotics. (pp. 167–181). Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_13
  • Schnell, N., Borghesi, R., & Schwarz, D. (2005). FTM : Complex Data Structures For Max/Msp. International Computer Music Conference (ICMC). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.3325
  • Shiratori, T. (n.d.). Detecting Dance Motion Structure Using Motion, (Figure 1).